A Metric on Shape Space with Explicit Geodesics

نویسندگان

  • LAURENT YOUNES
  • PETER W. MICHOR
  • JAYANT SHAH
  • DAVID MUMFORD
چکیده

This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc. . . ) Using these isometries, we are able to explicitely describe the geodesics, first in the parametric case, then by modding out the paremetrization and considering horizontal vectors. We also compute the sectional curvature for these spaces, and show, in particular, that the space of closed curves modulo rotation and change of parameter has positive curvature. Experimental results that explicitly compute minimizing geodesics between two closed curves are finally provided

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Geometry. — a Metric on Shape Space with Explicit Geodesics, By

— This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc.). Using these isometries, we are able to explicitly describe...

متن کامل

Geodesics on an ellipsoid in Minkowski space

We describe the geometry of geodesics on a Lorentz ellipsoid: give explicit formulas for the first integrals (pseudo-confocal coordinates), curvature, geodesically equivalent Riemannian metric, the invariant area-forms on the timeand space-like geodesics and invariant 1-form on the space of null geodesics. We prove a Poncelet-type theorem for null geodesics on the ellipsoid: if such a geodesic ...

متن کامل

ar X iv : 0 70 6 . 42 99 v 2 [ m at h . D G ] 5 M ay 2 00 8 A METRIC ON SHAPE SPACE WITH EXPLICIT GEODESICS

This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc. . . ) Using these isometries, we are able to explicitely descr...

متن کامل

ar X iv : 0 70 6 . 42 99 v 1 [ m at h . D G ] 2 8 Ju n 20 07 A METRIC ON SHAPE SPACE WITH EXPLICIT GEODESICS

This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc. . . ) Using these isometries, we are able to explicitely descr...

متن کامل

Geometry of Fisher Information Metric and the Barycenter Map

Geometry of Fisher metric and geodesics on a space of probability measures defined on a compact manifold is discussed and is applied to geometry of a barycenter map associated with Busemann function on an Hadamard manifold X . We obtain an explicit formula of geodesic and then several theorems on geodesics, one of which asserts that any two probability measures can be joined by a unique geodesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007